
Audit for

by

March 28th, 2023

�� Introduction
The ArtZero platform aims to be a decentralized NFT marketplace
on the AlephZero blockchain. It aims to allow the users to list their
NFT collections to be tradeable on the platform for a fee and to
create their NFT collection via the ArtZero contracts. The users can
create the collections as standard NFT collections or in an
advanced mode, which also serves as a launchpad for such
projects. The platform also comes with its native NFT Collection,
which owners can stake for platform fees and other perks.

Brushfam conducted an Audit, which serves as a technical audit
and an implementation audit, focused on code safety and
vulnerability to known issues, poor coding practices, unsafe
behavior, leakage of secret or other sensitive data, susceptibility
to misuse, error management, error logging, and business logic
review.

2. Contracts information
The contracts’ code resides in the Azero_Contracts folder, which
contains the contracts implementations and the logic of these
contracts. We recommend using a more comprehensive project
structure, which is addressed in the issue ARTZ-L01. The following
contracts and their traits were the subjects of this audit:

� Collection Manage�

� LaunchPad Manage�

� Marketplace PSP3�

� PMP Staking Contrac�

� Standard Launchpad Contrac�

� Standard NFT Contract

3. Audit process
The audit process consists of three parts:

Initial review Review changes

Period for applying
changes

we initially review the project and
its contracts and share the audit
report internally with the client

we review the new updates by the client, along
with reviewing other modifications done to the
code, and update the review summary
accordingly

the client will fix the findings and
issues shared in the initial report

Brushfam tech team initially identified several issues with the project structure. This was
addressed by the client, and since it is not a contract issue, we will not include it in the
audit report. All findings were assigned one of the following severity levels according to
the importance of the finding. We also assigned status to each finding (R - resolved, A -
Acknowledged):

What does it meanSeverity Level Findings R A

Critical

High

Medium

Low

Informational

Easily exploitable issues by many actors, or issues that cause
high-level code flaws, or can severely harm the users.

Issues that can harm the users but are not easily exploitable, or
only a specific number of actors can misuse this issue.

Issues that can harm the users but can be misused only on
certain occasions or features that do not work as desired.

Issues that have a low probability of occurring, issues which
are not harming users, or slightly affect the performance.
Memory footprint issues.

Code style and logging issues.

1 1 0

4 4 0

3 3 0

8 7 1

10 5 5

Findings
This section will examine the contracts and issues found during the audit.

Severity: Critical

ARTZ-C01 Initialize function can be called by anyone
multiple times

Found in Launchpad Manager

Initialize function, which initializes the contract storage, can be called by anyone,
which will lead to a reset of the contract storage, potentially harming the
platform users. Only privileged users should be able to call this function, and only
if they did not initialize the contract already.

Status: Resolved

Severity: High

ARTZ-H01 Initialize function can be called multiple
times

Found in Collection Manager, Marketplace, Staking

Initialize function will initialize the contract storage, but the owner can call the
function multiple times, leading to a contract reset, which may be an undesired
behavior. To avoid this, we recommend checking if the initialize function was
called already or making it not a message.

Status: Resolved

ARTZ-H02 Misuse of collection_owner

Found in Collection Manager

Functions auto_new_collection and add_new_collection use the collection
owner as a parameter, which malicious actors can misuse. Anyone can create
multiple empty NFT collections for an account. While this is unwanted behavior,
since the platform may show a famous account as a creator of numerous
collections (which also may be malicious), it may make the contract unusable
for the specified account since ink! has a size limit to the storage values. The best
way to handle this would be to omit the collection_owner attribute to this
function and work with the caller value.

Status: Resolved

Severity: High

ARTZ-H03 Misuse of project_owner

Found in Launchpad Manager

Function add_new_project uses the project owner as a parameter, which
malicious actors can misuse. Anyone can create multiple empty NFT collections
for an account. While this is an unwanted behavior since the platform can show
a famous account as a creator of numerous collections (which also may be
malicious), it may make the contract unusable for the specified account since
ink! has a size limit to the storage values. The best way to handle this would be to
omit the project_owner attribute to this function and work with the caller value.

Status: Resolved

ARTZ-H04 Possibility of DOS

Found in Marketplace

Function buy transfers funds to multiple accounts in a for loop. We expect each
transfer to succeed, but if a transfer fails, the contract execution reverts. And
since this call can not change the state, the storage will get stuck in the same
state. To address this issue, we suggest using a withdraw model, where if a user
outbids another user, the contract will save the value that this user can withdraw,
and then they can withdraw their bid by calling a withdraw function.

Status: Resolved

Severity: Medium

ARTZ-M01 Seller may receive fewer tokens

Found in Marketplace

If a seller sells an NFT, they will receive the amount they listed the token for,
reduced by the platform fee and the royalty fee. However, these fees are
calculated on sale, so a situation like this may occur. Alice lists a token for 1000
tokens, while the platform fee is 2.5% and the royalty fee is 0, expecting 975
tokens. The collection owner sets the royalty fee to 5%, and Bob buys the token
from Alice, but Alice only gets 925 tokens.

Status: Resolved

Notes: Information about the royalty fee at the time of listing is saved
and used to calculate the fee during the sale.

ARTZ-M02 Unsafe unwrap

Found in Multiple contracts

Throughout the contracts, unwrap is called on many places without the
assumption of the unwrap returning the None variant. This can cause the
contract execution to revert with panic, providing no reason. We recommend
using the ? operator, using the unwrap_or_default function and returning an
error on a None variant.

Status: Resolved

Severity: Medium

ARTZ-M03 Update collection owner

Found in Collection Manager

The function update_collection_owner does not remove the collection from the
owner’s collections, and the removal process can be optimized. The function will
insert the collection into the old owner’s collections instead of removing it. Also,
this function finds the collection index within the owner’s collections with the time
complexity O(n). This can be optimized to O(1) by saving the collection index
within this user’s collections. The removal process of the collection from the
user’s collection also has a time complexity of O(n). It can be optimized to O(1) by
swapping the removed collection for the last collection and removing the last
collection.

Example 1: Alice has 500 collections and wants to remove the 250th collection.
We need to iterate over 250 collections to get the index of the removed
collection. Ideally, we can save the index of this collection in the collection data,
and we can just retrieve the index within Alice’s collections. Note that after
implementing this approach, we will also need to update the index of this
collection after changing the owner, as two owners will have different collection
vectors.

Example 2: Alice has 500 collections and wants to remove the 250th collection.
After removing the 250th collection, the vec needs to be shifted by 250 elements.
We can avoid this by swapping the removed element (250th in this case) for the
last element (500th in this case) and removing the last element, so there will be
no need to shift the vec.

Status: Resolved

Severity: Low

ARTZ-L01 Storage is non-upgradeable

Found in PSP34 Launchpad Standard, PSP34 Standard

This contract has all the data in the contract struct. One problem with this is that
the contract's data could be more transparent when organized into separate
structs. Another problem, which would create more problems than the first one
mentioned, is that we will not be able to upgrade the storage in the future if we
would like to. Also, doing it this way makes the contracts inconsistent since the
structs used for contract storage in other contracts.

Status: Acknowledged

Notes: This issue was initially declared as a high-severity issue because
of ink! v3 not being stable and redeclared as low-severity, while an NFT
smart contract such as this one does not need to be upgradeable. While
this smart contract is upgradeable now, it will be complicated to
upgrade such a contract since the data struct is declared within the
contract. We recommend declaring the data struct and the logic of the
contract in a separate crate. However, due to the nature of these smart
contracts, they don't need to be upgradeable, and this issue was
acknowledged by the ArtZero team.

Severity: Low

ARTZ-L02 Unsafe arithmetic operations

Found in Multiple contracts

Several arithmetic operations are performed unsafely, leaving an opportunity for
overflow/underflow. These operations should be performed with checked_add,
checked_sub, checked_mul, and checked_div, and check for the result of such
operations afterward.

Status: Resolved

Notes: While there may still be unchecked arithmetic operations within
the code, we do not find these unsafe due to the nature of what values
can end up in such operations.

ARTZ-L03 Constructor execution may revert

Found in Collection manager

The contract's owner is initialized with owner_address, which comes as the
constructor parameter. If the owner_address is different from the caller of the
constructor, the function initialize will revert. Moreover, since we assume the
initialize call returns Ok, the unwrap call will also fail, reverting without a proper
reason. The output of initialize can be checked, and the function may panic if
the result is Err. We also recommend that the contract owner call the constructor
and pass instance.env().caller() as the parameter of _init_with_owner.

Status: Resolved

Severity: Low

ARTZ-L04 Function parameters can use references

Found in Collection manager

When passing parameters to a helper function, we recommend passing
references (even for primitives), as WASM is more efficient with references. We
identified several internal functions which can use references.

Status: Resolved

ARTZ-L05 Attribute keys are not known to the
contract

Found in Collection manager

The contract does not store the attribute keys, so only the user setting these
attributes knows them (if they remember) or a database. So in case of loss of
off-chain data, the information about the collection attributes will be lost. Better
logic for this would be to have a Mapping<AccountId, Vec<(String, String)>>,
which maps the account id to a vec of tuples, where the first element would be
the attribute key, and the second element would be the value of the attribute.

Status: Resolved

Severity: Low

ARTZ-L06 Token owner can not call lock function

Found in PSP34 Launchpad Standard

According to the logic, an owner of a token should be able to call the lock
function. But the contract checks if the caller is the owner of the contract.

Status: Resolved

ARTZ-L07 Inoptimal key type

Found in PSP34 Launchpad Standard, PSP34 Standard

The type of the storage field attribute_names may be changed to
Mapping<String, ()> to optimize the add_attribute function.

Status: Resolved

Notes: This issue is bound to the issue.ARTZ-L08

Severity: Low

ARTZ-L08 Attribute name logic can be optimized

Found in PSP34 Standard

The time complexity of adding and retrieving attributes and attribute names can
be optimized by adding another Mapping or using MultiMapping. The functions
add_attribute_name and get_attribute have a time complexity of O(n), with n
being the number of currently existing attributes. This can be optimized to O(1)
time complexity by mapping the attribute name to its value and the index of this
attribute to an empty value (note that this value can be anything, but because
of the nature of this field, an empty value or a boolean value would be most
suitable). You can achieve this by introducing a Mapping<u32, String> to keep
track of attribute names available and a Mapping<String,()> to keep track of
existing attribute names.

Status: Resolved

Severity: Informational

ARTZ-I01 Project structure

Found in Multiple contracts

Rust and ink! allow the developers to write the
smart contracts in a more architecture-friendly
way. We encourage this, as it makes the projects
more readable and easily maintainable. We
recommend breaking the structure of the
contracts into the following structure:

In this structure, the logic of the contracts would
be implemented within the src crate, and the
ready-to-deploy contracts would reside in the
contracts folder, with every contract being a
separate crate.

Status: Acknowledged

Severity: Informational

ARTZ-I02 Missing events for significant storage
changes

Found in Multiple contracts

It is a good practice to emit an event on significant storage changes since there
might be other services or APIs listening to such events, making the application
more accessible and transparent. We outlined several functions to the ArtZero
team where an event might be emitted.

Status: Acknowledged

ARTZ-I03 Possibility to use an enum

Found in Collection manager

The field contract_type in the Collection structure can be of type enum
ContractType, instead of an u8. Using an enum will make understanding the
field's value in the code easier, increasing readability and easing maintenance.

Status: Resolved

Severity: Informational

ARTZ-I04 Possibility to use modifiers

Found in Multiple contracts

In many places throughout the contracts, there are checks for the same
condition. This is duplicity and can be avoided by a custom modifier or a helper
function.

Status: Acknowledged

Notes: We recommend checking the contracts for duplicity and
removing them.

ARTZ-I05 Insufficient rights

Found in Multiple contracts

Only an admin can call some functions, but not the owner. Since the owner is a
higher role than the admin, the owner should also have the admin's rights. We
recommend the usage of an admin role or the use of the AccessControl trait to
manage roles.

Status: Acknowledged

Notes: The access roles of the contracts were improved. However, there
is still an unclear hierarchy of the roles.

Severity: Informational

ARTZ-I06 Unnecessary Option

Found in PSP34 Launchpad Standard

Functions get_phase_schedule_by_id and get_whitelist_by_account_id
return Option<T>, but the values returned originate from a Mapping. The return
statement can be simplified to self.phases.get(&phase_id) and
self.phase_whitelist_link.get(&(account, phase_id)).

Status: Resolved

ARTZ-I07 Inoptimal type used

Found in PSP34 Standard

The variable locked_tokens is only used to check if the tokens are locked;
therefore, we recommend using bool or enum type.

Status: Resolved

Severity: Informational

ARTZ-I08 Inconsistent error handling

Found in Marketplace

The function receive_hold_amount uses assert macro to handle the transfer.
We recommend sticking to the same error handling throughout the project,
meaning using Result here.

Status: Resolved

ARTZ-I09 Unnecessary unwrap

Found in Multiple contracts

The functions get_for_sale_token_id (Marketplace),
get_project_by_nft_address (Launchpad Manager), and
get_collection_owner (Collection Manager) return an Option. However, the
value of this Option is the result of another unwrap. This can be simplified without
using Some(), unwrap(), and also the functions from Option might be helpful.

Status: Resolved

Severity: Informational

ARTZ-I10 Reentrancy allowed on PSP22 and PSP34
transfer

Found in AdminTrait

The functions tranfer_psp22 and tranfer_nft transfer PSP22 and PSP34 tokens,
respectively, with reentrancy allowed. These functions are used to withdraw
tokens sent to the contract by mistake. The ArtZero team should exercise caution
while using this function, as the code of the PSP22 or PSP34 might reenter the
contract and potentially cause harm.

Status: Acknowledged

Conclusion
Brushfam tech team analyzed the smart contracts within the
scope according to the technical documentation provided during
the initial review. We manually reviewed these smart contracts and
analyzed the rust code with the available tools. We focused on the
code structure, code cleanness, ink! and OpenBrush specifics, and
vulnerability to known issues. During the initial review, we identified
several general issues regarding the project's architecture, which
were discussed with the ArtZero team and addressed.

We identified one critical severity issue, four high severity issues,
three medium severity issues, eight low severity issues, and ten
informational issues. All of these issues were resolved or
acknowledged by the ArtZero team. We provided an audit report to
the ArtZero team containing all the findings.

Disclaimer
As of the date of this audit, the audit of ink! has yet to be finished,
meaning potential vulnerabilities within its syntax and
implementation may occur. Therefore, unknown vulnerabilities
originating from the ink! language may present themselves and go
undetected by this audit process.

The audit makes no statements or warranties on the security of the
code. It also cannot be considered a sufficient assessment
regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we did our best in
conducting the analysis and producing this report, it is important to
note that you should not rely on this report only — we recommend
proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contracts.

The platform, its programming language, and other software
related to the smart contract can have vulnerabilities that can
lead to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

contacts

BD — Alina Antropova

@alantropova

brushfam.io

alina@727.ventures

